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Summary. The issue of complexity is more and more present in numerous domains of biologi-
cal research, including aging research. In the present paper, based on a selective review of literature, 
we propose both a conceptual and a methodological framework to address age-related changes in 
functional complexity of the neurobehavioral system, presumably resulting from modifications of 
the coupling between cognitive and sensorimotor processes. In particular, after reviewing pioneering 
and more recent studies on aging and complexity in the neuromusculoskeletal system, we explore the 
possibility that an age-induced increase in the coupling between cognitive and sensorimotor domains 
could be captured by a stronger covariation of high-order variables, common to both cognitive and 
sensorimotor functioning. Our main assumption is that these variables could behave as neurobe-
havioral markers of aging in the neuromusculoskeletal system. The present approach markedly 
differs from other traditional approaches, which focused on process-specific variable correlates of 
chronological age, domain-by-domain, and task-by-task. It provides a coherent conceptual frame-
work, a terminology, and a method for studying age-related coupling of cognitive and sensorimotor 
processes with the use of complexity and nonlinear dynamical systems theories.

Introduction
The passage of time in the organism inelucta-

bly leads to structural and functional alterations in 
its different component subsystems, which result 
in a decline of performance and loss of behavio-
ral adaptability in many daily living situations. Al-
though various age-induced phenomena occur con-
comitantly at multiple levels (cells, tissues, organs, 
functions, and behavior), across different subsys-
tems, and in various task conditions, interactions 
inevitably occur between functional domains of the 
neurobehavioral system. Consequently, researchers 
are forced to adopt a clear-cut theoretical position 
on the way of dealing with the issue of complexity 
in the neuromusculoskeletal system and its change 
during aging. In this respect, an explicit reference 
to dynamical systems analysis and complexity theo-
ries has been made in numerous studies on aging of 
physiological and neurobehavioral systems during 
the last 20 years (1–4). Nevertheless, a firm theoret-
ical background remains to be established to make 
these approaches more attractive in aging research.

Based on a brief survey of the existing litera-
ture, the present paper aims to provide a conceptual 
framework for understanding age-related changes 
in neurobehavioral complexity, in the theoretical 
context of analysis of nonlinear dynamical systems. 

In particular, we argue that an increased coupling 
of cognitive and sensorimotor processes observed 
during aging reflects a loss of complexity in func-
tional organization of the neurobehavioral system, 
resulting from dedifferentiation of neural processes. 
Accordingly, new lines of a research agenda are pro-
posed to identify neurobehavioral markers of in-
creased coupling between cognitive and sensorimo-
tor processing during aging.

In the first part of this paper, we present some 
preliminary statements about classic aging research 
and the different approaches of biological complex-
ity. In the second part, we show how the study of 
variability and complexity of behavioral output pro-
vides meaningful information about the underlying 
organization of the aging neurobehavioral systems. 
Finally, we present new research directions for ex-
ploring age-related changes in neurobehavioral 
complexity by focusing on common markers to 
cognitive and sensorimotor domain.

Aging Research and Biological Complexity: 
Some Preliminary Statements
Different Approaches of Complexity in the 
Neuromusculoskeletal System
It is commonly accepted that the neuromuscu-

loskeletal system is a complex system composed of 
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multiple interacting components at different levels 
(cells, organs, subsystems, …). Divergence exists, 
however, among researchers with respect to whether 
biological complexity must be considered as a re-
source or as an obstacle to understanding aging pro-
cess. Typically, two main theoretical approaches of 
biological complexity, so-called “local” and “glob-
al,” can be distinguished in aging literature. 

Proponents of the “local” approach assumed that 
the neurobehavioral system is decomposable so that 
the problem of complexity can be solved by divid-
ing it into smaller, simpler, and thus more tractable 
units (processes, tasks, …) in separate domains. Ac-
cordingly, they consider that age effects operate on 
multiple juxtaposed spaces and independent time 
scales, which relegate each subsystems and compo-
nents to their own causality. 

Numerous researchers have however argued that 
the human neurobehavioral system is more than a 
collection of static and independent components, 
governed by simple and linear causalities (3, 5) so 
that aging ineluctably leads to changes in biologi-
cal complexity as a consequence of alterations of 
the different components and their interactions (1). 
Proponents of this global approach argued that a 
challenge for aging research is to understand when, 
how, and why the complexity arising from the in-
teractions of the different systems evolves over time. 
In this perspective, concerted efforts have been de-
voted since the early 1990s to establish greater link-
ages between the different levels of analysis (e.g., 
brain, information processing, and behavior) (6, 
7) or even cross-domain linkages (the coupling of 
cognitive and sensorimotor processes) (8–10). In 
parallel, a “physical biology approach” (4), mainly 
grounded on nonlinear dynamic systems analysis 

and complexity theories, has emerged in aging liter-
ature (1, 4, 11, 12). The recognition is at the core of 
this approach that the neuromusculoskeletal system 
(NMSS) is a self-organizing/self-structuring, mul-
tiscale and multilayered system, whose dynamics 
is driven by chronological age and shaped by con-
straints arising from multiple sources of various ori-
gins (environment, organism, education, life habits, 
…), each having its own time scale. 

Aging as an Integrated Process Leading to 
Changes in Behavioral Adaptability
A characteristic feature of healthy biological sys-

tems is that they lose their internal robustness and 
complexity with aging and disease (1, 13). In this 
perspective, aging can be considered as a dynamic 
process, reflected in a sequence of (more or less) 
transient functional states over time. A challenge 
for researchers is to describe and understand gen-
eral principles of changes in typical states of neuro-
behavioral and physiological systems over time. In 
this perspective, assessing behavioral adaptability, 
instead of mean performance, is crucial. Behavioral 
adaptability refers to the capacity of preserving sta-
bility and flexibility facing task constraints. These 
two seemingly conflicting properties may be altered 
by age-induced alterations of the system compo-
nents and their interactions. Behavioral adaptability 
is thus an indirect indicator of underlying changes 
in functional complexity of the system for research-
ers and a meaningful property for clinicians (2). 

During the last 20 years, the physical biology ap-
proach has produced convincing findings and has 
permitted to identify some general principles of 
age-related changes in the complexity of the out-
puts of physiological subsystems (e.g., cardiovascu-

Fig. 1. The neuromusculoskeletal system (NMSS)
It is composed of multiple elements, at different levels, which interact to produce adaptive (i.e., stable and flexible) behavior. 

The local approach focuses on the study of the components independently. In the physical biology approach, the analysis focuses 
on the spatiotemporal complexity of behavioral outputs arising from multiple interactions between components.

NMSSS

Physical Biology Approach

Behavior

Local Approach
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lar system [1]) and task-specific action systems (e.g., 
grip force control, posture, locomotion, … see [12] 
and [14] for extensive reviews). These findings are 
briefly reviewed in the following chapter.

Aging and Complexity of Physiological and 
Neurobehavioral Systems
Functional Meaning of Variability 
of Behavioral Outputs in Complex Systems
During the last two decades, researchers and cli-

nicians have been progressively aware of the poten-
tial applications of dynamical system analysis and 
complexity theories in the domains of aging and 
disease (1). It has led to increasing recognition that 
what appears as white, unstructured, uncorrelated 
noise in data may possibly be structured in the form 
of correlation functions in the time and frequen-
cy domains (i.e., colored noise). Accordingly, re-
searchers have devoted most efforts to quantifica-
tion of fluctuations of behavioral outputs by using 
measures of regularity, randomness, and historicity 
of time series capturing system behavior. Fluctua-
tions of behavioral outputs represent a coarse grain 
signature of how the multiple elements interact de-
pending on task-context, timescales, and spaces. In 
this respect, nonlinear analyses of variability may 
reveal structures in fluctuations that remain unde-
tected by more traditional measures, such as mean 
performance changes or standard deviation. Struc-

tured fluctuations possess a great theoretical and 
clinical significance since they reveal the presence/
absence of coupling and characteristic temporal 
scale that may confer more or less adaptability to the 
system (1, 15). Thus, the challenge for complexity 
approaches to aging is to understand the meaning 
of the modification of structured variability with re-
gard to the functional organization of physiological 
and neurobehavioral system.

Quantification Time Series Regularity 
of Behavioral Outputs
Meaningful changes in behavioral variability in 

healthy aging systems, as well as in clinically rele-
vant syndromes (falling, neurodegenerative disease, 
…), are quantifiable by regularity measures. Classi-
cally, one considers that healthy systems are those 
that produce the lower levels of noise (i.e., of sto-
chastic inputs). Thus, variability is primarily consid-
ered as reflecting undesirable random noise of vary-
ing magnitude, which would be superimposed on an 
invariant deterministic signal (16). It is noticeable, 
however, that magnitude and complexity of fluctua-
tions are relatively independent: magnitude of vari-
ability may be unaltered whereas complex structure 
changed.

Instead, when the regulating systems are dis-
turbed within a complex network, as a result of ag-
ing or disease, behavioral control may be impaired, 

Fig. 2. Comparison of heart rate variability in sleeping children
Magnitude of variability is measured by standard deviation (SD). Structure of variability is captured by approximate entropy 
(ApEn). Panel A, children with aborted sudden infant death syndrome. Panel B, normal children. One can observe that SD 

of both time series was equivalent but ApEn significantly differ. See explanations in the text. Adapted from (24).
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thereby leading to alterations of multiscale dynamics 
of fluctuations. Consequently, nonlinear analysis of 
time series may discriminate physiological or neu-
robehavioral disorders while other measures may not.

Since complexity of times series is associated with 
structural richness, to assess it, one quantifies “irreg-
ularity” and time dependence of fluctuations in the 
time series. In this respect, an important methodo-
logical challenge is to detect and quantify irregulari-
ties, scaling and correlation properties of physiologic 
and neurobehavioral time series, which are typically 
nonstationary (see 17 and 18 for detailed descrip-
tions of the different methods). In this aim, multiple 
nonlinear methods can be used, each having their 
own interest and limits (e.g., approximate entropy, 
detrended fluctuation analysis, spectral analysis, or 
Lyapunov exponent) to capture relative contribu-
tions of stochastic and deterministic influences to 
the change in the system output (19–22).

According to these general principles, two types 
of measure have been predominantly used in ag-
ing research for investigating changes in complexity 
of physiologic and neurobehavioral system outputs 
(1, 23). On the one hand, it is approximate entropy 
(ApEn), which is a measure of the amount of in-
formation needed to predict the future state of the 
system: the larger the entropy, the more irregular 
the fluctuations, the less predictable the system (1, 
22, 24, 25). Typically, the ApEn algorithm returns 
a value tending toward 2 for highly irregular signals 
and 0 for highly regular signals. It does not iden-
tify, however, the contribution of deterministic and 
stochastic processes to the observed regularity, and 
surrogate tests are necessary to rule out the possibil-
ity that irregularity reflects random noise. On the 
other hand, it is fractal scaling exponent calculation 
(α), which provides an estimation of the “rough-
ness” of the time series and permits to quantify the 
reliance on history through the presence of time 
sequential and frequency-dependent properties of 
time series (self-similarity). Specifically, one con-
siders that the larger the value of the fractal expo-
nent, the smoother the time series. In this context, a 
value of α equal to 1 (so-called 1/f noise) can be in-
terpreted as the best compromise between complete 
unpredictability associated with white noise (α=0.5) 
and the much smoother profile of Brownian noise 
(α=1.5). A breakdown in optimal long-range cor-
relation properties in time series is in keeping with 
the loss of complexity in the system output. Pre-
sumably, such breakdown is associated with func-
tional impairment in information transmission and 
processing in the neurobehavioral system (17). 

Aging and the Loss of Complexity Hypothesis
During the last 20 years, knowledge gleaned 

from seminal studies of physiologic systems (1) has 

stimulated dynamical investigations of age-related 
variability in neurobehavioral systems (12, 26–28). 
A central assumption for theorizing complexity and 
aging holds that alterations in the structural and 
functional properties of the organism lead to a loss 
of complexity in system outputs and, consequently, 
in the capacity of the elderly to adapt to various 
forms of constraints (1, 3, 17, 29, see 23 for a re-
view). This hypothesis was supported by pioneering 
studies based on the analysis of physiological and 
neurobehavioral systems (cardiac rhythm, postural 
control, …) (1, 24). They showed that healthy sys-
tems possess the highest adaptability (healthy) and 
generate the most physiologically irregular signals. 
For instance, analysis of scaling behavior in a va-
riety of cardiac pathologies and in healthy elderly 
people indicated significant alterations in short- and 
long-range correlation properties (for reviews, see 
17, 23). It was noticed, however, that alterations of 
scaling behavior associated with physiologic aging 
were different compared with those characterizing 
heart failure. These findings were consistent with 
those observed by Lipsitz and Goldberger (1992) 
using approximate entropy analysis (i.e., a decrease 
in ApEn in older adults), which suggested a loss of 
complexity of fluctuations in the time series. Thus, 
loss of complexity, which is a consequence of age-
induced aberrations in the temporal organization of 
the evolving dynamics, might be a generic feature 
of aging and a subset of dynamical disease (1, 11). 

Since the seminal work done by Lipsitz and 
Goldberger (1992), approximate entropy and fractal 
scaling analyses have been used in complex time se-
ries of a large variety of subsystems outputs: systolic 
blood pressure (30), gait (20), electroencephalogra-
phy (31), center of pressure trajectory in postural 
control (32), grip force control (33), aiming (34), or 
even human cognition (35–37). Results confirmed 
the presence of structured, long-range correlated 
fluctuations in healthy organisms and supported the 
hypothesis of systematic breakdown of long-range 
correlations in behavioral outputs as a result of ag-
ing and disease. However, whether or not aging led 
to a decrease in complexity seemed to depend on 
a particular dynamic property of the system under 
investigation. It has led Vaillancourt and Newell (23, 
see also 4) to propose the “loss of adaptability hy-
pothesis.” They assumed that aging might result in 
either a decrease or an increase in complexity, as a 
function of task-specific constraints, both leading to 
impairment in behavioral adaptability.

Aging and the Loss of Adaptability Hypothesis
In an extensive review of literature, Vaillancourt 

and Newell (4, 23) examined the universality of the 
principle of loss of complexity with aging. They 
suggested that the direction of changes in output 
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complexity could be system- or task-dependent. 
More specifically, they showed that in some systems 
(e.g., the cardiovascular system), a loss of com-
plexity revealed an impaired capacity, and in other 
systems (e.g., gait, grip force control), an increase 
in complexity signaled an impairment of control. 
These findings were counter to the loss of complex-
ity hypothesis, which assumed that the predictabil-
ity in physiological output should increase with age. 
Rather, they suggested that there is not a universal 
principle of directional change in the complexity 
of behavioral outputs. Instead, change in complex-
ity might depend on the nature of adaptive change 
required to realize particular system’s environment 
demands. Newell and collaborators (4, 23) distin-
guished between two types of intrinsic dynamics 
(resulting from fixed-point and rhythmical attrac-
tors), which presumably determine different routes 
for effective adaptation to a task-specific constraint. 
On the one hand, fixed-point attractor tasks (at-
tractor dimension =0) when the system operates 
around a steady state as for instance in physiologi-
cal homeostasis (heart rate, hormone secretion, pos-
tural control). In this zero dimension attractor, an 
increase of the system’s active degrees of freedom 
is needed to maintain optimal performance result-
ing in an increase of the output complexity (higher 
ApEn). In the case of aging or disease, the impos-
sibility to increase the system’s degrees of freedom 
should result in a reduction in adaptability with a 
reduced output complexity (lower ApEn). In this 
case, there is a loss of complexity with aging. On 
the other hand, Vaillancourt and Newell (23) pos-
tulated that for limit-cycle attractor tasks (oscilla-
tory dynamics with attractor dimension =1) where 
a decrease in degrees of freedom is required to per-
form the task, one should observe an increase in 
complexity with aging and disease (i.e., an increase 
in ApEn). Indeed, in these tasks, the elderly are 
unable to decrease the number of active degrees 
of freedom to perform the task and thus fluctuates 
more around the intrinsic dynamic resulting in a 
more complex behavioral or physiological output. 
Gait cycle or diurnal rhythm of adrenocorticotrop-
ic hormone concentration was a typical example 
of oscillatory dynamics (20, 38). Vaillancourt and 
Newell (12) tested this hypothesis in an isometric 
force production task performed in either constant 
or periodic (sine wave) conditions. Results showed 
that structured fluctuations of force output were 
less complex in old and older-old adults, in the 
constant force production task, and that they were 
more complex in the sine wave task. These results 
confirmed that the directional change of the com-
plexity of physiologic and neurobehavioral system 
outputs covaries with the dimension of the intrin-
sic dynamic that organize the system (23).

Behavioral Output Complexity 
and Functional Organization 
of the Neurobehavioral System
Though numerous studies supported the hy-

pothesis that change in complexity of behavioral 
outputs is a generic feature of aging in physiologic 
and neurobehavioral systems, the question remains 
how this coarse grain level of analysis of behavioral 
outputs reflects underlying mechanisms that occur 
within the neurobehavioral system and gives rise to 
changes in complexity. In this respect, we contend 
that more detailed model systems are needed to bet-
ter establish the relationship between mechanisms 
that operate within the system and the observed 
complexity of behavioral outputs (see 39 for a con-
vergent point of view).

According to the current definitions of biological 
complexity (23, 40), whatever the direction of change 
in the structured fluctuations of behavioral outputs, 
change in complexity is hypothesized to result from 
four (non mutually exclusive) primary mechanisms 
induced by aging: 1) impairment and/or loss in the 
number of individual subcomponents of the system; 
2) change in the strength of couplings between the 
components; 3) change in stochastic inputs (e.g., 
neural noise); and 4) increase in time delays of in-
formation transmission within the system (slowing). 

However, classic studies on aging were predomi-
nantly interested in investigating separately the 
functional consequences of these different factors 
on behavioral performance rather than considering 
them in the perspective of age-related changes in 
complexity. For instance, impairment of the differ-
ent individual component subsystems (neuromus-
cular, cognitive, energetic, …) and/or loss in the 
number of components (e.g., loss of neural cells, 
muscle fibers, white matter, force decrement, …) 
have been widely studied in isolation (41–45). The 
role of stochastic inputs (i.e., neural noise) has also 
recently been the subject of increased interest in 
cognitive aging literature through the study of in-
traindividual variability of performance (7, 46). The 
issue of behavioral consequences of age-induced in-
crease in time delays of information processes (i.e., 
the general slowing hypothesis) has been addressed 
for a long time in cognitive literature (47, 48). How-
ever, how changes in these factors affected the com-
plexity of the neurobehavioral system was scarcely 
addressed in the literature, and consequently, non-
linear measures of structured fluctuations of behav-
ioral performance were rarely considered as mean-
ingful indicators of age-related changes in cognitive 
or sensorimotor functioning. As noticeable excep-
tions, recent studies by Delignières and cowork-
ers showed, however, that measures of complexity 
fruitfully added to the understanding of underlying 
mechanisms of timing in finger tapping and (loss of) 

Aging and Changes in Complexity in the Neurobehavioral System
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stability of bimanual coordination patterns, which 
were classically assessed by the magnitude of vari-
ability (49, 50, see 39 for an overview).

The question remains, however, how complexity 
approaches can be applied to the study of interactions 
between subcomponents of the neurobehavioral sys-
tem that cannot be modeled as nonlinear oscilla-
tors as, for instance, the coupling between cognitive 
and sensorimotor processes. This issue has recently 
emerged as an important preoccupation in aging re-
search (51, 52). Specifically, it has been suggested 
that aging was accompanied by a dedifferentiation of 
cognitive and sensorimotor processes at both brain 
and behavior, which leads to a stronger coupling be-
tween cognitive and sensorimotor abilities (53, see 
51 for a review). According to the dedifferentiation 
hypothesis, aging may be considered an integrated 
process affecting the whole functional organization 
of the neurobehavioral system. Consequently, the 
occurrence of increase in the coupling among the 
different subsystem components is critical to under-
standing age-induced changes in the complexity of 
the neurobehavioral system. We would like to draw 
some theoretical working hypotheses and methodo-
logical procedures in this perspective.  

The Coupling of Cognitive and 
Sensorimotor Processes: a Window 
for Exploring Age-Related Changes 
in Neurobehavioral Complexity  
Neurobehavioral Markers of Dedifferentiation 
of Cognitive and Sensorimotor Processes
Ideally, to explore the dynamics of changes in 

the coupling of two a priori independent systems 
(e.g., cognitive and sensorimotor systems), one 
should be able to collect time series of the signals 
that represent behavioral outputs of the two systems 
simultaneously and/or to capture their relationship 
either by a “collective” variable of the coupling/syn-
chronization pattern (for a general introduction, see 
54; see 55 for a detailed example in interlimb coor-
dination) or thanks to nonlinear tools as cross-en-
tropy analysis (56). However, in the case of coupling 
between cognitive and sensorimotor domains, it is 
technically difficult since cognitive and sensorimo-
tor systems cannot be assimilated to self-sustained 
oscillators and does not possess obvious collective 
variables. Thus, in most experimental paradigms 
aiming at investigation cognitive-sensorimotor cou-
pling (including double-task paradigms), behavioral 
time series cannot be simultaneously and continu-
ously recorded.

We argue that an alternative strategy permitting 
to account for cognitive-sensorimotor coupling lies 
in the search of common neurobehavioral mark-
ers to cognitive and sensorimotor processes, which 
might permit to assess their time (more and more 
correlated) coevolution. The underlying neuro-
physiological justification of this approach is the 
widely accepted “common cause hypothesis,” which 
assumed that some of the mechanisms that are at 
origin of age-related decline in cognitive and sen-
sorimotor performance might be shared among dif-
ferent nervous structures in the neurobehavioral 
system (8, 9, 57). These common structures could 
mediate the so-called “coupling” between cognitive 

Fig. 3. Simplified representation of the different sources of the loss of adaptability in the neuromusculoskeletal system
S1, the circles represent different interacting components of the NMSS, giving rise to a fixed level of complexity of behavioral 
output of the whole system. The arrows indicate direction and intensity of their interactions. S2, S3, and S4 illustrate changes 
in system’s complexity resulting from a loss of a component (S1), modifications in the number, intensity, or time delays in the 

interactions (S3) or an increase in the number of component in the system (S4). Changes in system complexity are expressed in 
macroscopic patterns of fluctuations of behavioral outputs. Adapted from (2).

S1 S2

S3 S4
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and sensorimotor processes in a wide range of tasks. 
Accordingly, if cognitive and sensorimotor process-
es become more and more intertwined until form-
ing a single, almost undifferentiated entity in the 
neurobehavioral system, then it should be possible 
to identify common markers permitting to assess (to 
infer) the degree of coupling between cognitive and 
sensorimotor processes.

What is a Neurobehavioral Marker of Aging? 
A neurobehavioral marker of aging is a param-

eter intended as a quantitative measure of the rate 
of aging in the neuromusculoskeletal system that 
represents a more accurate index than chronologi-
cal age. Moreover, in the absence of disease, it must 
better predict functional capacity at some later age 
than will chronological age (58). Accordingly, to be 
considered as a neurobehavioral marker, any meas-
ured variable at brain or behavioral level should tap 
into the fundamental capacities of the central ner
vous system (CNS) and summarize its general state 
(59). According to Deary and Der (60, see also 61, 
62), other general characteristics, which might be 
possessed by the chosen variables to meet the cri-
teria of a neurobehavioral marker aging, are as fol-
lows: 1)  stable individual differences across several 
years in large adult samples; 2) a clear pattern of 
age-related deterioration from young adulthood to 
old age; and 3) changes from baseline measurement, 
which are related to mortality and morbidity in lon-
gitudinal studies even after adjustment for age. 

Examples of behavioral measures that have been 
used as biomarkers of aging in cognitive and senso-
rimotor domains were grip strength, blood pressure, 
visual acuity, or mental processing speed (63). The 
classic procedure consisted of studying longitudinal 
correlations of two or more cognitive and sensori-
motor measures in order to infer dedifferentiation 
between the two domains. We contend, however, 
that to reflect age-related increase in the coupling 
between cognitive and sensorimotor processes, the 
most important constraint to the definition of neu-
robehavioral markers is that they should measure 
“high order” common phenomena that are observ-
able in both cognitive and sensorimotor domains.

 
Potential Common Neurobehavioral Markers 
to Cognitive and Sensorimotor Processes
Even if a general decrease in information pro-

cessing capacity is not the unique cause of age-relat-
ed declines in performance of the neurobehavioral 
system, it presumably explains most of behavioral 
manifestations of age-related sensorimotor and 
cognitive changes. Consequently, the following 
premises can be followed for identifying variables 
measuring overt behavioral manifestations resulting 

from changes in neural resources and information 
processing capacities in both cognitive and motor 
domains: 1) the CNS is an information-processing 
system whose limited central capacity affects both 
cognitive and sensorimotor functioning, and 2) 
speed of cognitive and motor behavior are highly 
dependant on information processing capacity; 
3) both cognitive and motor functioning become 
more reliant on central mechanisms during aging 
by virtue of increased sharing of neural resources 
(64, 65), and 4) organization and coupling between 
components of the CNS change over time, thereby 
modifying their interactions (23); 5) a decline in 
general information processing capacities depends 
on neural processes that are (at least in part) shared 
by both domains; 6) age-related changes that occur 
at both neurochemical and neuroanatomical levels 
of the brain decrease functional information pro-
cessing capacities in both specific and nonspecific 
global fashion (47, 64); 7) neural decline in infor-
mation processing might then “enslave” the evolu-
tion of both cognitive and sensorimotor domains, 
thereby causing correlated behavioral outcomes; 8) 
dedifferentiation of information processing capaci-
ties in cognitive and sensorimotor domains might 
be reflected in similar overt manifestations, which 
can be consider as common neurobehavioral mark-
ers of their functioning (66–69); and 9) neural noise 
increases in the information processing system dur-
ing aging resulting in more inconsistent behavior. 

Taken together, the above considerations sug-
gest that (at least) three categories of neurobehav-
ioral markers could capture the coupling between 
cognitive and sensorimotor coupling: 1) complexity 
measures of fluctuations of behavioral performance 
of cognitive and sensorimotor systems; 2) an in-
traindividual variability measure of behavioral per-
formance; and 3) response speed. Most importantly, 
since these three makers are supposed to reflect a 
common cause in the neurobehavioral system, their 
evolution over age should be increasingly correlated.

Changes in Complexity of Cognitive and Senso-
rimotor Performance. If change in complexity is a 
generic feature of aging (4, 23), then changes in 
structured behavioral outcomes in both cognitive 
and sensorimotor domains of functioning should 
be correlated (1). Adequate markers could then be 
found in entropy and fractal dimension analyses to 
quantify the complexity of time series of behavio-
ral output in both cognitive and sensorimotor tasks. 
Correlated changes in complexity should permit to 
infer underlying modifications of coupling interac-
tions between the components of the system (23). 
One predicts that directional change in complexity 
reflecting a loss of adaptability should be similar in 
both cognitive and sensorimotor tasks.
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Time Measures. It is currently admitted that 
speed is critical to the performance of information 
processing systems (70). Since rapid responses re-
quire an efficient system of communication within 
the CNS in both cognitive and sensorimotor tasks, 
speed of processing is commonly considered as an 
indicator of basic neurocognitive resources (71) and 
age-related neurological status (48). Accordingly, 
speed of processing in both cognitive and motor 
tasks could be a useful neurobehavioral marker of 
cognitive aging.

 Intraindividual Variability Measure. Because 
neural noise strongly depends on the central com-
mand-signal resulting from information transmis-
sion and processing, an intraindividual variability of 
behavioral outcome is also commonly considered as 
an indicator of basic neurocognitive resources and 
age-related neurological status (72).

It is noticeable that response speed and intrain-
dividual variability are currently considered as pre-
senting the formal characteristics of biomarkers of 
aging in cognitive literature (60–62). It remains to 
be determined whether they are common biomark-
ers to sensorimotor processes and whether they can 
reflect the increased coupling between these two 
functional domains. 

How to test Neurobehavioral Markers 
of Cognitive-Sensorimotor Coupling? 
The above-developed theoretical framework leads 

to a specific research agenda, which is quite different 
from classic studies in aging research. Indeed, instead 
of analyzing the coevolution of two specific varia-
bles, each measuring behavioral performance in cog-
nitive and sensorimotor domains, it consists of ana-
lyzing the correlated changes in common measures 
to cognitive and sensorimotor processes in different 
tasks (i.e., performance output complexity, response 
speed, and intraindividual variability of behavioral 
performance). The coevolution of these markers is 
hypothesized to express underlying common causes 
of age-related changes in behavioral performance. 
Specifically, if the measured values of each marker 
evolve in the same direction and are more and more 
strongly related to age, then it would indicate that 
the coupling between cognitive and sensorimotor 
processes increased so that functional capacities tend 
to be more and more undifferentiated. 

To test the coevolution of the values of the dif-
ferent markers, we have to choose representative 
tasks of cognitive and sensorimotor central infor-
mation processing capacities. In this respect, reac-
tion time tasks (Hicks’ tasks) and unimanual aiming 
tasks (Fitts’ task) are adequate. Indeed, reaction time 

tasks permit a measure of the amount of informa-
tion processed to choose a response (i.e., Hick’s 
law) and have been considered for a long time as 
representative tasks in the cognitive domain (73). 
Similarly, Fitts’ aiming tasks permit a measure of the 
amount of information processed to accurately stop 
the limb on a target (i.e., Fitts’ law) and have been 
considered as representative tasks in the sensorimo-
tor domain (67, 74). Thus, it should possible to use 
a common metrics to quantify information process-
ing rates in both cognitive and sensorimotor tasks. 
Consequently, one could determine whether pro-
cessing capacities evolve with the same trend during 
aging, that is, if they become more and more cor-
related. If affirmative, one could affirm that change 
in structured fluctuations (i.e., complexity), slowing 
of motor responses and increases in intraindividual 
variability were high order markers of the dediffer-
entiation process. These markers would presumably 
capture the efficiency of the neurobehavioral sys-
tem, as a result of increased coupling between cog-
nitive and sensorimotor processes. 

Concluding Remarks and Perspectives
Our conviction is that changes in complexity in 

the neurobehavioral system are the expression of 
subtle changes, which take place in active (though 
hidden) dimensions within the system (i.e., freez-
ing/releasing of dynamical degrees of freedom). 
They lead to modifications of the coupling scheme 
and its implementation within the neurobehavioral 
system and, accordingly, its complexity. Searching 
for common markers of cognitive and sensorimo-
tor aging and exploring their coupled evolution is a 
new mean for exploring changes in neurobehavioral 
complexity.

Identification of neurobehavioral markers of ag-
ing might have potential clinical applications for 
simplifying assessment of frailty and cognitive/sen-
sorimotor disease. For instance, correlated changes 
in these markers might have a predictive value to 
predict an individual path to a loss of adaptability, 
frailty, and disease based on their actual values.

A caveat is in order however. At the moment, 
the complexity paradigm in aging research consists 
more of a unified way of thinking rather than a fin-
ished body of knowledge. Until a general theory ap-
pears, it is impossible to tell whether all the pieces of 
the aging puzzle are at hand that unify the facts well. 
We hope that the conceptual framework exposed in 
the present paper will contribute to provide a proper 
metatheory for aging and firmly establish the com-
plexity approach as attractive and fruitful resources 
in the field of cognitive and sensorimotor aging.
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Senėjimas ir elgseną lemiančios nervų sistemos kompleksiškumo pokyčiai

Benoit Rey-Robert, Jean-Jacques Temprado, Eric Berton
Valstybinio mokslinių tyrimų centro ir Viduržemio jūros universiteto E. J. Marey judėjimo mokslų institutas, 

Marselis, Prancūzija

Raktažodžiai: senėjimas, kompleksiškumas, apytikrė entropija, ryšys, pažinimas, sensomotoriniai procesai.

Santrauka. Biologinių tyrimų srityje vis dažniau nagrinėjama kompleksiškumo problema. Ši proble-
ma nagrinėjama tiriant ir su senėjimu susijusius klausimus. Šiame straipsnyje, remiantis atlikta literatūros 
apžvalga, siūlome koncepcinį ir metodologinį modelį, leidžiantį tirti elgseną lemiančios nervų sistemos 
funkcinio kompleksiškumo kaitą, sąlygojamą senėjimo ir galimai pasireiškiančią dėl pažinimo ir sensomo-
torinių funkcijų tarpusavio ryšio pokyčių. Apžvelgę pirmąsias ir pastarųjų metų publikacijas apie senėjimą ir 
nervų-raumenų-griaučių sistemos kompleksiškumą, atskleidėme galimybę senėjimo sukeltus, padidėjusius 
pažinimo ir sensomotorinių funkcijų tarpusavio ryšio pokyčius nustatyti remiantis aukštesnio rango kinta-
mųjų stipresne kovariacija, kuri būdinga tiek pažinimo, tiek sensomotorinėms funkcijoms. Remiantis mūsų 
pagrindine prielaida, minėti nervų-raumenų-griaučių sistemos kintamieji gali elgtis kaip neuroelgseniniai 
senėjimo ženklai. 

Taigi, siūloma metodika labai skiriasi nuo kitų tradicinių metodikų, kurios orientuotos į atitinkamas 
proceso kintamųjų koreliacijas, atsižvelgiant į chronologinį amžių, parametras po parametro ir užduotis po 
užduoties. Ji teikia nuoseklią koncepciją, terminologiją ir metodiką, kuri nagrinėja su senėjimu susijusių 
pažinimo ir sensomotorinių funkcijų tarpusavio ryšio pokyčius, remiantis kompleksinių ir netiesinių dina-
minių sistemų teorijomis.
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